General
Description

= P

Yy 4

Ly~ 2
XC

Features

El Camino GmbH
July 2025, Version 2.3

SD/MMC SPI Core

with Avalon Interface

The SD/MMC SPI Core with Avalon Interface allows you to easily con-
nect Qsys or Platform Designer systems to standard MultiMedia™ Card
(MMC) and Secure Digital Card (SD) flash based memory devices. The
MultiMediaCard and SD-Cards are universal, low cost data storage and
communication media, which are generally available and widely used
in consumer products such as digital cameras or cellular phones. The
SD/MMC SPI Core is fully compliant with Qsys and Platform Designer
and integrates easily into any Qsys/Platform Designer generated sys-
tem.

For the NIOS II processor, El Camino provides low-level driver rou-
tines for the SD/MMC SPI Core. The drivers provide universal access
routines for MMC and SD memory devices. Therefore you do not need
to write any additional low level code to read or write raw data from or
to MMC/SD cards.

Figure 1: Block Diagram

FPGA

o] Avalon CPU
- | | e [| or
MultiMediaCard/ t-| _ o [s— £ ™ Bridge
| » © g
SD Card k- w
| < °
1 2 ®
g 4
@
§ Other Avalon
[Masters/Slaves
<L fws

More than 2400 kByte/s read and 2400 kByte/s write performance
Supports MultiMediaCard (MMC) and Secure Digital Card (SD,
SDHC, SDXC) in SPI mode

Variable data rate up to 25 Mbps (SD only), 20 Mbps (SD/MMC)
Hardware assisted CRC calculation

Low-level drivers included

Windows utility for raw data read/write access on PC platform
Optional Stand-Alone FAT12/16/32 file system library

Optional prototyping adapter for Altera and El Camino NIOS
development boards

Applications

Deliverables

Architecture
Specification

El Camino GmbH

SD/MMC SPI Core - with Avalon Interface

The SD/MMC SPI Core is ideal for applications where a mobile, stan-
dard and exchangeable storage media is required for NIOS II applica-
tions. Together with the provided Windows utility it is easy to exchange
raw data between a NIOS application and the PC platform.

When used together with the El Camino SD/MMC loader, FPGA con-
figuration data can be combined with application data or program stor-
age on a removable, common and compact storage media.

Qsys/Platform Designer ready IP core in VHDL

Low-level software drivers for initialization, read and write access
Optional prototyping adapter for Altera and El Camino Nios pro-
totyping boards

Figure 2: SD/MMC SPI Core Block Diagram

clock Bau_d_ Rate SCLK >
Divisor
control
<dat—a> rxdata [/
—1 shift register | D _FROM _GCARD
txdata 4
D TO_CARD
Avalon ere? ‘ SD/MMC
Interface Interface
crc16 [—]
- < WP
status
[
CDn
control
IRQ
-
CSn
slaveselect |

The SD/MMC SPI core has the following user visible features:

A memory-mapped register space comprised of 8 registers:
rxdata, txdata
status, control, slaveselect, clock control
crc7, crcl6

El Camino GmbH

SD/MMC SPI Core - with Avalon Interface

Six SD/MMC card interface ports:
SCLK, CSn
D TO CARD,D FROM CARD
WP, CDn

The registers provide an interface to the SD/MMC SPI core and are vis-
ible via the Avalon slave port. The SCLK, CSn, D TO_CARD,

D FROM_CARD, WP and CDn ports provide the hardware interface
to the SD/MMC card.

The core logic is synchronous to the clock input provided by the Avalon
interface. The Avalon clock is divided to generate the SD/MMC CLK

output.

Table 1: Port Description

Port

Direction Function

SCLK

Clock Signal to the SD/MMC card. This clock is derived from
the system clock by a parameterizable clock divider. The fre-
quency determines the data rate and must be set in the SOPC
builder.

output

D _TO CARD

Data in port to the SD/MMC card (host to card commands and

output data).

D FROM_CARD

Data out port from the SD/MMC card (card to host data and sta-

input
pu tus).

CSn

output Chip select (active low) to the SD/MMC card.

CDn

card detect input from the SD/MMC card connector, mapped
input into the status register. Connect to GND if not available on the
hardware.

WP

write protect input from the SD/MMC card connector, mapped
input into the status register. Connect to GND if not available on the
hardware

Table 2: Qsys/Platform Designer Settings

Parameter

Legal

Values Default | Description

SPI Clock
frequency

<=25 MHz 20

The SPI_Data_Rate value is used to calculate an appropriate
clock divisor value to implement the desired SPI Data Rate.
The resulting effective SPI Data Rate is reported in Qsys/
Platform Designer and will be less or equal the desired SPI
Data Rate. The effective data rate will depend on the rela-
tionship between the desired data rate and the actual system
clock frequency.

The achievable data rate values are:

<Avalon system clock frequency>/[2,3,4,5,6...]

For support of SD cards only the data rate can be set to 25
MHz, for support of both SD/MMC cards the data rate
should be set to 20 MHz.

SD/MMC SPI Core - with Avalon Interface

Figure 3: Qsys/Platform Desginer GUI

SD/MMC SPI Core

altera_avalon_sd_mmc_spi

El Camine

4
|~ Block Diagram |~ Parameters
[show signals SPI Clock Frequency in MHz: |25

controller

valon_slave walon intermupt mterruE‘E sender
lock_reset

ﬁiclock
lock_reset_reset

ﬁimset

onduit_enc

duit

ttera_awalon_sd_mmc_spi

(@ Info: controller: Requested SPI Rate: 25.0 MHz
(@ Info: controller: Actual SPI Rate: 25.0 MHz, Deviation: 0.0 %

Figure 4: Connecting the SD/MMC SPI Core

VCC VCC VCC VCC VCC vCC

1) SD/MMC SPI Core
rsv -8 1=

DataOut - 7 || - D_FROM_CARD

VSS-6 | - -
MMC/ cik-51 | SCLK
sSD VDD -4 [Aval
VSS-3 1] | L D_TO_CARD valon (<l
Dataln - 2 | _ [Interface
. CS-1 1 |« L 3 CSn
(tOp VleW) rsv-9L_0)
WP
t CDn

I

(1)Pull-up resistors are 10kOhm

Register Model

An Avalon master peripheral controls and communicates with the SD/
MMC SPI core via the 8 16-bit registers, shown in the following table:

El Camino GmbH 4

SD/MMC SPI Core - with Avalon Interface

Table 3: Register Map for SD/MMC IP Core

K‘;er‘;:: R;iisn::r 152 | 11 10 [9] 8 7 6 5 4 3 2 1 0
0 rxdata RXDATA
1 txdata TXDATA
2 status (1) CD E RRDY | TRDY | TMT | TOE ROE WP MS
3 control ICD SSO 1IE IRRDY | ITRDY ITOE | IROE ?)II{I({: CEEISR S%I:;T
4 crc? CRC7 1
5 slaveselect SELECT
6 clock control SYS_CLK SPI_CLK_DIVISOR
7 crcl6 CRC16

(1) A write operation to the status register clears the roe, toe and e bits

El Camino GmbH

rxdata Register

A master peripheral reads received data from the rxdata register. When
the receive shift register receives a full 8 bits of data, the status register’s
rrdy bit is set to 1 and the data is transferred into the rxdata register.
Reading the rxdata register clears the rrdy bit. Writing to the rxdata reg-
ister has no effect. New data is always transferred into the rxdata regis-
ter, whether or not the previous data was retrieved. If rrdy is 1 when data
is transferred into the rxdata register (i.e., the previous data was not re-
trieved), a receive overrun error occurs and the status register’s roe bit
is set to 1. In this case, the contents of rxdata are undefined.

txdata Register

A master peripheral writes data to be transmitted into the txdata register.
When the status register’s trdy bit is 1, it indicates that the txdata regis-
ter is ready for new data. The trdy bit is set to 0 whenever the txdata reg-
ister is written. The trdy bit is set to 1 after data is transferred from the
txdata register into the transmitter shift register, which readies the txda-
ta holding register to receive new data.

A master peripheral should not write to the txdata register until the
transmitter is ready for new data. If trdy is 0 and a master peripheral
writes new data to the txdata register, a transmit-overrun error occurs
and the status register’s toe bit is set to 1. In this case, the new data is
ignored, and the content of txdata remains unchanged.

As an example, assume that the SD/MMC SPI core is idle (i.e., the tx-
data register and transmit shift register are empty), when a CPU writes
a data value into the txdata holding register. The trdy bit is set to 0 mo-
mentarily, but after the data in txdata is transferred into the transmitter
shift register, trdy returns to 1. The CPU writes a second data value into

SD/MMC SPI Core - with Avalon Interface

the txdata register, and again the trdy bit is set to 0. This time the shift
register is still busy transferring the original data value, so the trdy bit
remains at 0 until the shift operation completes. When the operation
completes, the second data value is transferred into the transmitter shift
register and the trdy bit is again set to 1.

status Register

The status register consists of bits that indicate status conditions in the
SD/MMC SPI core. Each bit is associated with a corresponding inter-
rupt-enable bit in the control register, as discussed in “control Register”.
A master peripheral can read status at any time without changing the
value of any bits. Writing status does clear the roe, toe and e bits. The
next table describes the individual bits of the status register.

Table 4: status Register Bits

Name Description
Millisecond Timer

0 MS One millisecond after the CNT START bit in the control register was set to 1 this bit is set to 1. This bit is automatically
reset after reading from the status register.

) WP Write Protect
The WP bit mirrors the status of the write protect input of the SD/MMC core.
Receive-overrun error

3 ROE The ROE bit is set to 1 if new data is received while the rxdata register is full (that is, while the RRDY bit is 1). In this
case, the new data overwrites the old. Writing to the status register clears the ROE bit to 0.
Transmitter-overrun error

4 TOE The TOE bit is set to 1 if new data is written to the txdata register while it is still full (that is, while the TRDY bit is 0).
In this case, the new data is ignored. Writing to the status register clears the TOE bit to 0.

5 TMT Transmitter shift-register empty
The TMT bit is set to 0 when a transaction is in progress and set to 1 when the shift register is empty.
Transmitter ready

6 TRDY The TRDY bit is set to 1 when the txdata register is empty.
Receiver ready

7 RRDY The RRDY bit is set to 1 when the rxdata register is full.
Error

8 E The E bit is the logical OR of the TOE and ROE bits. This is a convenience for the programmer to detect error condi-
tions. Writing to the status register clears the E bit to 0.

1 cD Card Detect

The CD bit mirrors the status of the card detect input of the SD/MMC core.

El Camino GmbH

control Register

The control register consists of data bits to control the SD/MMC SPI
core’s operation. A master peripheral can read the control register at any
time without changing the value of any bits. Most bits (ICD, IROE,
ITOE, ITRDY, IRRDY, and IE) in the control register control interrupts
for status conditions represented in the status register. For example, bit
1 of status is ROE (receiver-overrun error), and bit 1 of control is IROE,

SD/MMC SPI Core - with Avalon Interface

which enables interrupts for the ROE condition. The SPI core asserts an
interrupt request when the corresponding bits in status and control are
both 1. The next table describes the individual bits of the control regis-
ter.

Table S: control Register Bits

Name Description
Counter Start

0 NT START - o o

CNTS Writing a 1 to this bit starts a one millisecond counter. When the counter expires the MS bit is set in the status register.

CRC Register Clear

1 CRC CLEAR | This bit resets the CRC7 and CRC16 registers and prepares new CRC calculations base on the data sent or received by
the core.
CRC Direction

2 CRC DIR This bit connects the CRC7 and CRC16 registers to either the transmit or receive channel. Setting this bit to 1 calculates
CRCs on outgoing data. Setting this bit to 0 calculates CRCs on incoming data.

3 IROE Setting IROE to 1 enables interrupts for receive-overrun errors.

4 ITOE Setting ITOE to 1 enables interrupts for transmitter-overrun errors.

6 ITRDY Setting ITRDY to 1 enables interrupts for transmitter ready conditions.

7 IRRDY Setting IRRDY to 1 enables interrupts for the receiver ready condition.

8 IE Setting IE to 1 enables interrupts for any error condition
Setting SSO to 1 forces the SD/MMC SPI core to drive its cs_n output, regardless of whether a serial shift operation is in

10 SSO progress or not. The slaveselect register controls which cs_n outputs are asserted. sso can be used to transmit or receive
data of arbitrary size (i.e., greater than 16 bits).

11 ICD Setting ICD to 1 enables interrupts for card detect conditions

El Camino GmbH

After reset, all bits of the control register are set to 0. All interrupts are
disabled and no cs_n signal is asserted after reset.

slaveselect Register

The slaveselect register is a bit mask for the cs_n signals driven by SD/
MMC SPI core. The core has only one cs_n output mapped to bit O of
the slaveselect register. During a serial shift operation, the SPI master
selects only the slave device(s) specified in the slaveselect register.
Upon reset, bit 0 is set to 1, and all other bits are cleared to 0. Thus, after
a device reset, the SD/MMC card is automatically selected.

clock control Register

The uper half of the clock control register is read only and contains the
system clock frequency that was set in the SOPC builder. This register
is used to pass the actual system clock frequency to the sofware driver.
The lower half of the clock control register can be read and written. A
read returns the inital divisor as set by the SOPC builder. The software
driver can update the value of the register in order to change the SPI
clock frequency. A read however will always return the intial value so

SD/MMC SPI Core - with Avalon Interface

this value can be restored after a different divisor was written by the
software driver. The regiser should only be written while there’s no ac-
tive transfer because otherwise transfered data may become corrupted.

Resource The following results are based on synthesis and place & route in

o= . Quartus II Version 9.0 SP1. The maximum frequency of the data trans-
Utilization and fer is limited by both the maximum system frequency of the SOPC
Pe rfO rmance builder block and the maximum SCLK frequency of the SD/MMC card.

Table 6: Resources (support not limited to these device families)

Device Family Ressource
Cyclone V 121 ALMs
Stratix V 119 ALMs
Arria 10 119 ALMs

The following table shows some exemplary performance numbers. The
actual performance will depend on the NIOS II CPU used, the clock fre-
quencies used in the system, the SPI clock frequency and especially for
writing, on the SD/MMC card used. The performance of the FAT file
sytem will further depend on the fragmentation.

Table 7: Performance

Aavalon
Low Level | Low Level FAT 32 FAT 32
Platform NIOS CPU System SPI Clock Read Write Read Write
Clock
Altera NEEK Cyclone III Kit
sync. SRAM (1 cycle/access) fast 100 MHz 25MHz | 2486 kByte/s | 2410 kByte/s | 2469 kByte/s | 2380 kByte/s
Software Basic Concept
su PpPo rt The SD/MMC SPI peripheral is integrated into the HAL generic device

model classes as a FLASH memory device.

The HAL provides a generic device model for non-volatile flash mem-
ory devices such as SD/MMC cards. The HAL API provides functions
to write data to flash. For example, you can use these functions to im-
plement a SD/MMC-based filing subsystem.

Although it is not necessary for general, parallel FLASH devices, the
HAL API also provides functions to read flash. For most flash devices,
programs can treat the flash memory space as simple memory when
reading, and do not need to call special HAL API functions. If the flash
device has a special protocol for reading data, just like SD/MMC cards,
you must use the HAL API to both read and write data.

El Camino GmbH 8

El Camino GmbH

SD/MMC SPI Core - with Avalon Interface

The following two NIOS II HAL APIs provide a different level of ac-
cess to the flash:

Simple flash access

a simple API for writing buffers into flash and reading them back,
which in general does not preserve the prior contents of other flash
erase blocks.

Fine-grained flash access

finer-grained functions for programs that need control over writ-
ing or erasing individual blocks. This functionality is generally
required for managing a file subsystem.

With SD/MMC cards you can write single bytes without the need to
erase whole blocks or sectors. So even when using simple flash access
all data within a sector or block is preserved even when not writing the
complete sector or block. Only for compatibility reasons with other
flash devices it might make sense to use fine-grained flash access even
with SD/MMC cards.

The API functions for accessing flash devices are defined in alt_flash.h.

Simple Flash Access

This interface comprises:

alt flash open_dev(), alt write flash(), alt read flash(), and

alt flash close dev().

Writing and Reading can start at any address and can be of any length
as long as one stays within the boundarys of the SD/MMC card. For
maximum compatibility with older SD/MMC cards however it is re-
commneded to start writing only on block boundaris. The block size can
be determined with the ,,alt get flash info()* function. The typical
block size for most SD/MMC cards is 512 bytes.

The code “Example: Using the Simple Flash API Functions” in the Nios
IT Software Developer's Handbook shows the usage of all of these func-
tions in one code example.

Fine Grained Flash Access

There are three additional functions that provide complete control over
writing flash contents at the highest granularity:

alt get flash info(), alt erase flash block(), and

alt write flash block().

These functions are implemented for compatibility reasons with other
flash devices however are not necessary when accessing SD/MMC

El Camino GmbH

SD/MMC SPI Core - with Avalon Interface

cards.

SDHC Support

High Capacity (HC) and Extended Capacity (XC) SD cards support
capcities up to and including 32 GB or 2 TB respectively. The function
alt get flash info() can be used to determin the size of the memory
card.

alt get flash info() gets the number of erase regions, the number of
erase blocks in each region, and the size of each erase block. The func-
tion prototype is as follows:

int alt get flash info (
alt flash fd* fd,
flash region** info,
int* number_of regions)

For SD/MMC cards, the number of regions will always be 1.

If the call is successful, on return *info points to an array of flash_region
structures. This array is part of the file descriptor.

The flash region structure is defined in sys/alt flash types.h. The data
structure is defined as follows:

typedef struct flash region

{

int offset; /* Offset of this region from start of the flash */
int region_size; /* Size of this erase region */

int number of blocks;/* Number of blocks in this region */

int block_size; /* Size of each block in this erase region */

}flash region;

If the capacity of the SD card is greater than 2 GB, the actuall capacity
cannot be represented by region_size and the return value will be ,,-1%.
It is then up to the application to calculate the correct size from
number_of blocks and block_size.

In order to support an address space greater than 4 GB, SDHC/SDXC
cards use block addressing (512 bytes) rather than byte addressing.

In case of SDHC/SDXC cards, byte addresses below 2 GB are automat-
ically converted to block addresses by the HAL driver.

In order to address memory locations above the 2 GB boundary, an ad-

dress with the MSB (bit 31) set to ’1” will be treated by the driver as a
block address. The block size for SDHC/SDXC memory cards is fix and

10

SD/MMC SPI Core - with Avalon Interface

has the value 512.

El Camino GmbH 11

SD/MMC SPI Core - with Avalon Interface

Command Line The utility ,,sd_rd_wr* allows to read and write raw data from and to SD
Tool or MMC cards. The tool provides its own documentation in the form of
a help page, accessible from the command line. To view the help, open
a DOS Command Shell, and type the following command:
sd rd wr-h

Usage: sd rd wr x: file.dat [-w] [-o:offset] [-b:bytes] [-h]

Table 8: sd_rd_wr utility command line options

Default when ommitted

Paramter Description
reading writing
X: always required | always required | drive letter of SD/MMC card
file.dat always required | always required | source or desitination file name

write daat from file.dat to SD/MMC card

W default when omitted: read data from SD/MMC card and store in file.dat
-o:offset 0 0 decimal byte offset from address 0 of SD/MMC card
-b:bytes 512 size of file.dat | number of bytes to read or write
-h display on-line help
.
PrOtOtypl n g Figure 5: Prototyping Hardware
Hardware

The IP core comes with an optional small prototyping board that can be
used together with E1 Camino or Altera NIOS boards that feature a San-
ta Cruz prototyping header. The schematics of the prototyping hardware

El Camino GmbH 12

SD/MMC SPI Core - with Avalon Interface

can be found at the end of this document. The SPI mode chip select, as

well as the card detect and write protect switch signals can each be rout-
ed to one of two connector pins. This allows to cascade up to two SD/

MMC prototyping boards. In such a cascaded configuration some sig-

nals need to be routed individually. Soldering bridges allow to put indi-
vidual prototyping boards into an A or B configuration and de-activate
the pull-up resistors on one of them. On a request basis, the prototyping
boards can be outfitted with connectors that support cascading.

The following table lists the signal mapping.

Table 9: J2B Pin Descriptions

Co:jztor Sch‘ematic Connect‘ to IP Core SD/MMC Pin | Function - SPI Bus Mode Function - SD Bus Mode

Pin Signal Signal

3 SD_SD1 9 Reserved Data Line [Bit 2]

4 SD_CMD D_TO_CARD 2 Host to Card Commands and Data | Command/Response

5 SD_D1 8 Reserved Data Line [Bit 1]

6 SD_CLK SCLK 5 Clock Clock

7 SD_SWWP_A WP (default)

8 SD_DAT D_FROM_CARD 7 Card to Host Data and Status Data Line [Bit 0]

9 SD SWWP B WP

11 SD SWCI_A CDn (default)

12 SD_D3CS_A CSn (default) 1 Chip Select (Active Low) Card Detect/Data Line [Bit 3]

13 SD SWCI B CDn

14 SD_D3CS_B CSn 1 Chip Select (Active Low) Card Detect/Data Line [Bit 3]
Custom Please contact E1 Camino if you require any custom solutions based on
Solutions this 1P

El Camino GmbH

13

Notes:

El Camino GmbH
Landshuter Str. 1

D-84048 Mainburg
Germany

Telefone +49-8751-8787-0
Telefax +49-8751-8787-10
E-mail: info@elca.de
http://www.elcamino.de

El Camino GmbH

SD/MMC SPI Core - with Avalon Interface

El Camino GmbH Training - Engineering - Consultancy, DIGILAB 10K10, DIGILAB picoMAX,
DIGILAB 10Kx240, DIGILAB 20Kx240, DIGILAB megAPEX and other names of EI Camino pro-
ducts, product features and services are trademarks and/or service marks of El Camino GmbH in Ger-
many and other countries. Altera, APEX, Stratix, Quartus, NIOS and other names of Altera products,
product features and services are trademarks and/or service marks of Altera Corporation in the United
States and other countries. Other product and company names mentioned in this document may be the
trademarks of their respective owners.

No warranties: This documentation is "as is" without any express or implied warranty of any kind inclu-
ding warranties of merchantability, no infringement of intellectual property or of fitness for any particu-
lar purpose. In no event shall EI Camino or its suppliers be liable for any damages whatsoever
(including, without limitation, damages for loss of profits, business interruption or loss of information)
arising out of the use of or inability to use this documentation, even if El Camino has been advised of
the possibility of such damages. Because some jurisdictions prohibit the exclusion or limitations of lia-
bility for consequential or incidental damages, some of the above limitations may not apply to you.

El Camino further does not warrant the accuracy or completeness of the information, text, graphics or
other items contained in this document. EI Camino may make changes to these materials, or to the pro-
ducts described therein, at any time without notice. E1 Camino makes no commitment to update this do-
cument.

Copyright© 2025 El Camino GmbH. All rights reserved

14

