

General Description

The DIGILAB SX V is a universal FPGA prototyping platform based on Altera's Stratix V device family. It can be used for ASIC prototyping, hardware evaluation or as a verification acceleration vehicle

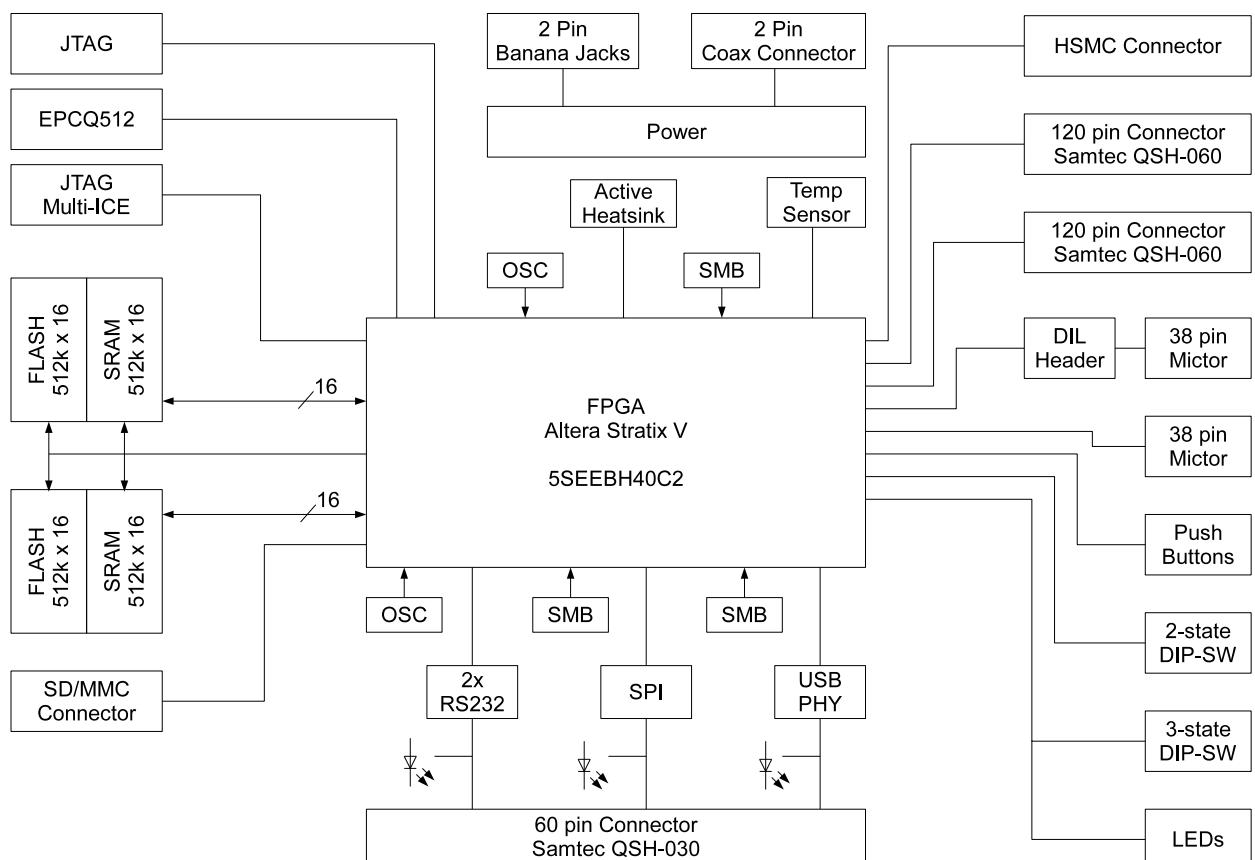
Features

- Available with Altera Stratix V device in 1517 Pin FineLine BGA Package
 - 5SEEBH40C2 (standard)
 - 5SEE9 (on request)
- 338 user I/Os through
 - One Altera HSMC connector
 - Two Samtec QSH-060 (120 contact) connectors
 - Two 38 pin Mictor connectors
 - Nine DIL/SIL headers
- 2 MByte (512k x 32-bit) FLASH memory
- 2 MByte (512k x 32-bit) SRAM
- Configuration
 - EPCQ512 non-volatile configuration memory (AS x1 mode)
 - Push-buttons for reset and configuration
 - Various LEDs for configuration status
- User Interface
 - 32 three-state DIP switches with programmable pull-up/pull-down and 32 user LEDs
 - 16 two-state DIP switches
 - 8 push buttons, selectable low- or high active with programmable pull-up/pull-down
- Connector for SD/MMC cards
- JTAG connector for Altera download cable
- JTAG Multi-ICE connector
- Interfaces with monitoring LEDs
 - Two RS232 transceivers with 3-driver/3-receiver each
 - SPI interface connector
 - USB 1.1 transceiver (USB 2.0 support on request)
- Clocking
 - 80 MHz Crystal oscillator
 - 25 MHz Crystal oscillator
 - 3 SMA clock inputs
- Power supply circuitry
- FPGA controlled active heat sink and temperature sensor

Preface

Environmental Requirements

The development board must be stored between -40°C and 85°C. The recommended operating temperature is between 0°C and 70°C. Please contact El Camino for availability information on DIGILAB SX V boards that support the industrial temperature range of -40°C to 85°C.


The board can be damaged without proper anti-static handling.

Anti-static precautions should be taken before handling the board.

Functional Description

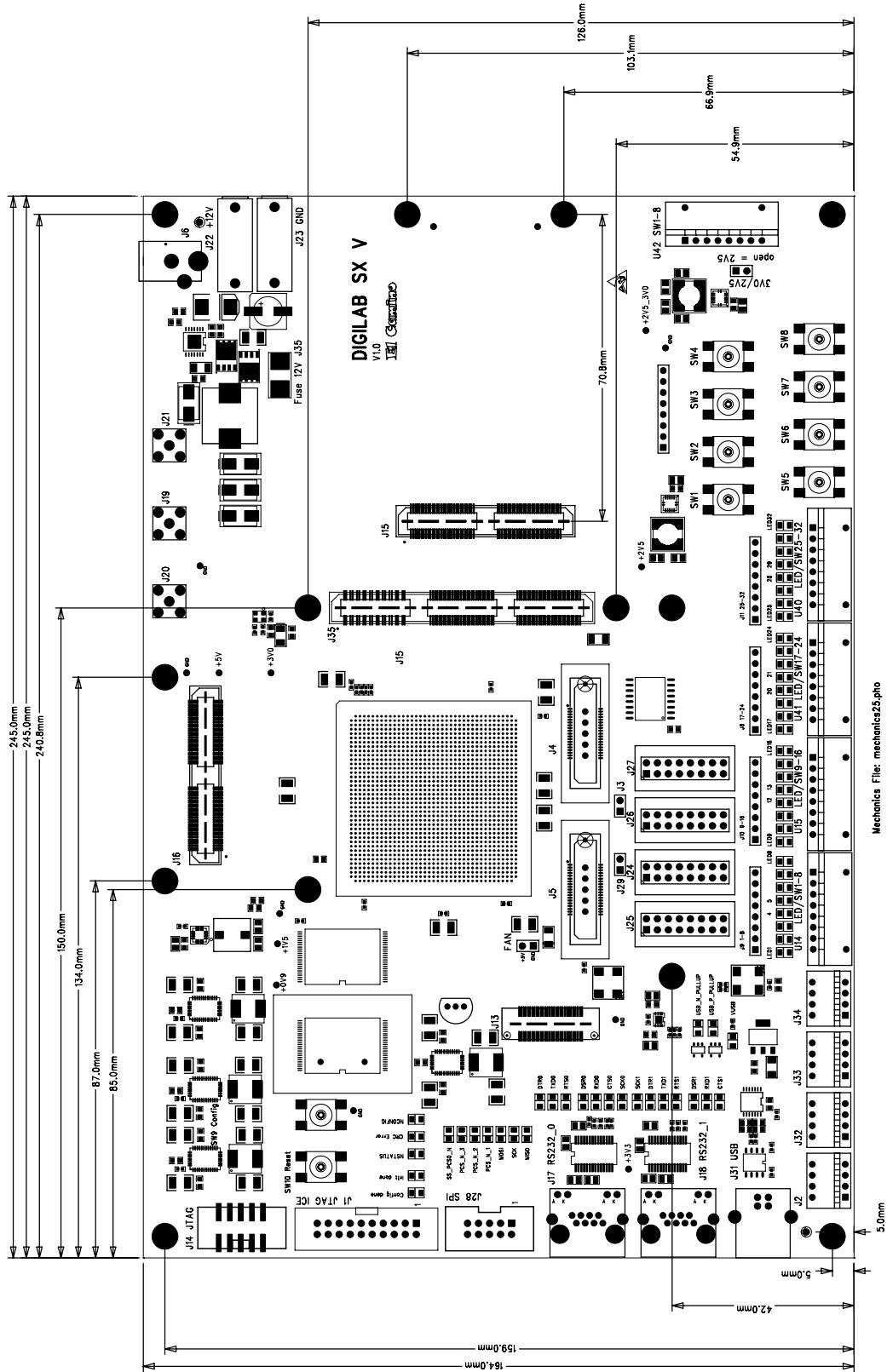

This section describes the elements of the DIGILAB SX V prototyping board. Figure 1 shows a block diagram of the board.

Figure 1: DIGILAB SX V Block Diagram

The DIGILAB SX V is a general purpose prototyping platform. Figure 2 shows the basic mechanical setup of the DIGILAB SX V. The measurements can be used to develop and manufacture custom adapter boards. Contact El Camino if you require further details on the mechanical dimensions of the board.

Figure 2: DIGILAB SX V Mechanical Setup - Top View

Stratix V Device

The DIGILAB SX V board can be equipped with any Stratix V device in a H40-H1517 FineLine BGA package with 696 IOs. Devices currently supported in this package are the 5SEE and the 5SEEB. Furthermore it is possible to select any speed grade. Pricing and availability of the board will depend on the Stratix V device chosen. The standard device is the 5SEEBH40C2

Disable Unused Resources

When implementing custom user designs it is important to disable unused resources on the DIGILAB SX V, so that there are no bus contentions e.g. on the data bus connected to SRAM and FLASH.

In order to avoid contentions on the various switch and push button inputs it is recommended to either use the design template that is provided with the board or reserve all unused pins „As input tri-stated with weak pull-up resistor“. The board may be damaged if this guideline is not followed.

The SRAM and FLASH devices have pull-up resistors on their active low select lines.

Table 1: Disable Unused Resources

Function	Signal	Stratix V Pin	Value
SRAM	SRAM_CE1	AN11	'1' or 'Z'
	SRAM_CE2	AH15	'1' or 'Z'
FLASH	FLASH_CE1_N	AH10	'1' or 'Z'
	FLASH_CE2_N	AV19	'1' or 'Z'

Power Supply

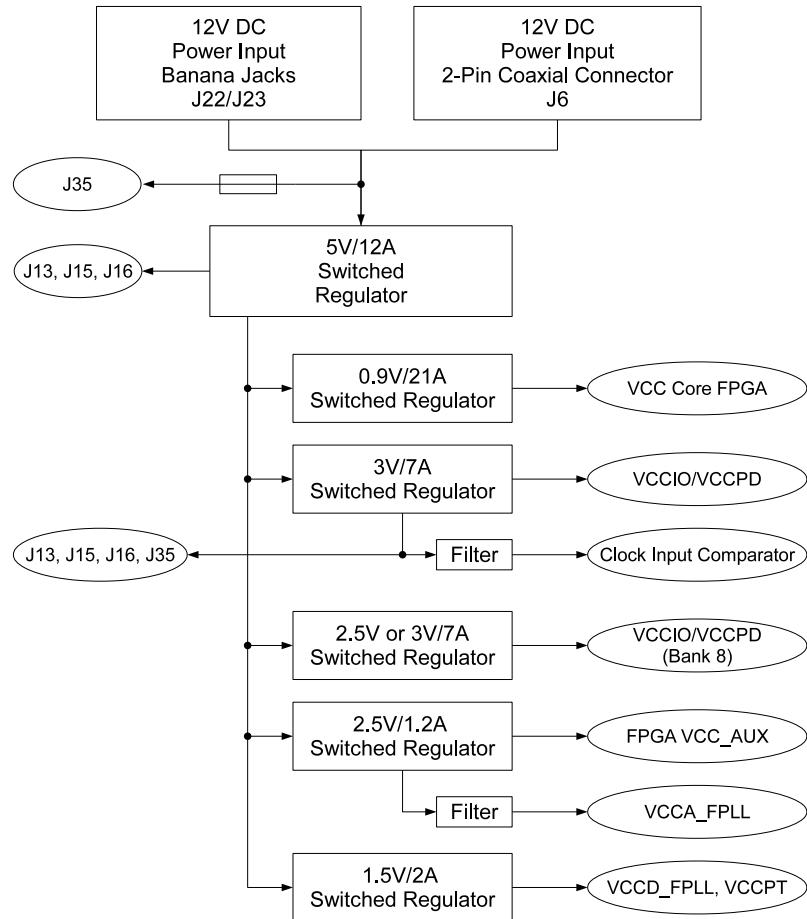

The DIGILAB SX V is meant to be used in a lab environment. It requires a 12V DC input and offers two optional power connectors. Power can be supplied through two banana jacks or a coaxial two pin power connector.

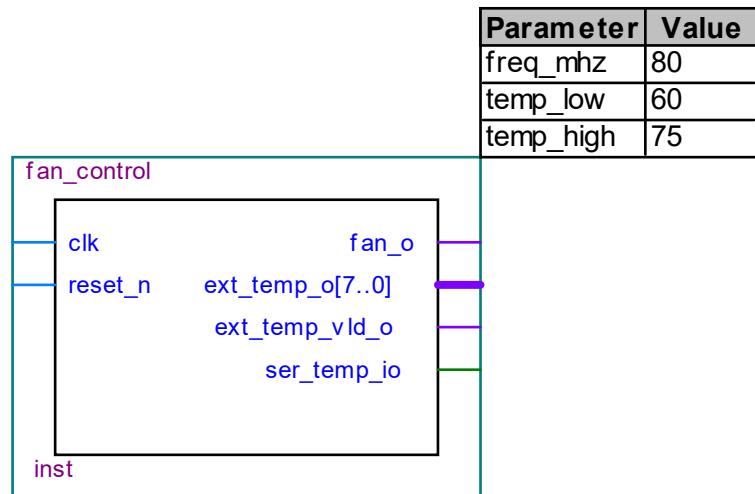
Table 2: Power Supply Options

Option	Voltage	Connector	Description
Banana Jacks	12V DC	J22 (red) +12V J23 (black) GND	For use with a Lab power supply
2-Pin Coaxial Connector	12V DC	J6	For use with a standard power adapter (positive tip polarity)

The DC input current when unconfigured and during configuration is approximately 450 mA at 12V DC. The input current while the maintenance design is running and during self-test is approximately 550 mA.

Figure 3: DIGILAB SX V Power Supply

Thermal considerations


The total power consumption can vary significantly, depending on the implemented design and the clock frequencies. Refer to information from Altera for details on Stratix V power consumption. We strongly recommend to do a power analysis and/or monitor the Stratix V case temperature during operation.

Depending on the design implemented and the total power consump-

tion, active cooling may be necessary. A 5V DC cooling fan is connected to J30. The fan can be controlled from within the FPGA by driving the PWM_FAN signal. Furthermore, the board is equipped with an active temperature sensor that is mounted with a thermal adhesive to the board in close proximity to the FPGA. The board comes with an encrypted IP function, that reads the temperature once per second and controls the cooling fan. The IP function has the following IO ports and parameters and can be instantiated in a user design. Alternatively the fan control signal PWM_FAN can be left floating or driven high to permanently turn on the fan. During configuration the fan will be on, which gives some feedback on the functionality of the fan at each power or configuration cycle.

Figure 4: Fan Control

Table 3: Fan Control Ports and Parameters

	Name	Direction	Function
Parameter	freq_mhz	in	Specifies the clock frequency in MHz. Used to calculate timing for accessing the temperature sensor
	temp_low	in	Temperature in degree Celsius at which the fan will start to receive PWM pulses
	temp_high	in	Temperature in degree Celsius at which the fan will be fully turned on
Ports	clk	in	Clock input
	reset_n	in	Low active reset input, de-assertion should be synchronized to clk externally
	fan_o	out	Control signal for the fan; should be connected to PWM_FAN on the board
	ext_temp_o[7..0]	out	Actual temperature in degree Celsius (signed), valid while ext_temp_vld_o is high
	ext_temp_vld_o	out	High while ext_temp_o is valid
	ser_temp_io	inout	Interface to the temperature sensor, connect to SER_TEMP_DATA_PCB through a bi-directional pin

SRAM

U31 and U32 are two 1 MByte (512k x 16) asynchronous SRAM devices. They are connected to the Stratix V device so that they can be used by any custom logic in the FPGA or by a Nios II processor as general-purpose memory. The two 16-bit devices can be used in parallel to implement a 32-bit wide memory subsystem. The SRAM shares a common bus with the on-board FLASH devices.

A data sheet for the SSRAM devices can be found at:

URL: <http://www.alliancememory.com>

Type: AS7C38098A

The pinout can be found in the following table or it can be extracted from the netlist, that comes with the board.

CFI Flash Memory

U60 and U44 are two 1 MByte (512k x 16) CFI FLASH memory devices that can be used as a general purpose, non-volatile storage. They are connected to the Stratix V device so that they can be used by any custom logic in the FPGA or by a Nios II processor as general-purpose, non-volatile memory. The two 16-bit devices can be used in parallel to implement a 32-bit wide memory subsystem. The FLASH devices share a common bus with the on-board SRAM devices.

A data sheet for the Flash memory devices can be found at:

URL: <http://www.sst.com>

Type: SST39VF800A

The pinout can be found in the following table or it can be extracted from the netlist, that comes with the board.

Table 4: Memory Signals - SRAM U31/U32 and FLASH U60/U44

Signal	Stratix V U30	SRAM	FLASH	Signal	Stratix III U30	SRAM	FLASH
DQ_0	AM14	U31	U60	A0	AJ6	both	both
DQ_1	AN14	U31	U60	A1	AV8	both	both
DQ_2	AH12	U31	U60	A2	AN10	both	both
DQ_3	AN12	U31	U60	A3	AG10	both	both
DQ_4	AJ12	U31	U60	A4	AW8	both	both
DQ_5	AG12	U31	U60	A5	AV10	both	both
DQ_6	AL12	U31	U60	A6	AW10	both	both
DQ_7	AK12	U31	U60	A7	AV11	both	both
DQ_8	AK11	U31	U60	A8	AN8	both	both
DQ_9	AH13	U31	U60	A9	AL11	both	both
DQ_10	AM13	U31	U60	A10	AR6	both	both
DQ_11	AL13	U31	U60	A11	AR9	both	both
DQ_12	AM10	U31	U60	A12	AU7	both	both
DQ_13	AJ10	U31	U60	A13	AU8	both	both
DQ_14	AP12	U31	U60	A14	AT9	both	both
DQ_15	AN15	U31	U60	A15	AT17	both	both
DQ_16	AP10	U32	U44	A16	AU17	both	both
DQ_17	AG9	U32	U44	A17	AT18	both	both
DQ_18	AH9	U32	U44	A18	AU9	both	both
DQ_19	AN9	U32	U44	A19	AR11		both
DQ_20	AP9	U32	U44	A20	AJ7		both
DQ_21	AR15	U32	U44	SRAM_WE	AP6	both	
DQ_22	AR14	U32	U44	SRAM_OE	AU16	both	
DQ_23	AP15	U32	U44	SRAM_CE1	AN11	U31	
DQ_24	AU10	U32	U44	SRAM_LB1	AM8	U31	
DQ_25	AT11	U32	U44	SRAM_UB1	AM11	U31	
DQ_26	AU11	U32	U44	SRAM_CE2	AH15	U32	
DQ_27	AT12	U32	U44	SRAM_LB2	AT15	U32	
DQ_28	AU12	U32	U44	SRAM_UB2	AU15	U32	
DQ_29	AR12	U32	U44	FLASH_OE_N	AP18		both
DQ_30	AT14	U32	U44	FLASH_WE_N	AV13		both
DQ_31	AU14	U32	U44	FLASH_CE1_N	AH10		U60
				FLASH_CE2_N	AV19		U44

RS-232 Serial Interfaces

The DIGILAB SX V provides two independent bidirectional RS-232 serial I/O interfaces. The board contains the transceiver (U3, U4), however the logic controller (UART) must be implemented in the Stratix V device.

J17 and J18 are standard RJ45 connectors. These connectors can be used for communication with a host computer using an adapter cable to connect to a COM port. In addition, all RS-232 signals are available through J13, a Samtec QSH-30 connector, which allows to connect custom add-on or interface boards.

J17 and J18 can transmit all RS-232 signals. The Stratix V design may use only signals it needs, such as RXD and TXD. LEDs are connected to all RS232 signals, giving a visual indication, whether data is being transmitted or received. The following table shows the pin mapping between the Stratix V device and the RS232 signals.

A data sheet for the RS-232 transceiver can be found at:

URL: <http://www.maxim-ic.com>

Type: MAX3238

Table 5: RS-232 Interfaces

Interface	Function	Stratix V - U30		RJ45 Connector	Samtec Connectors J13
		Signal	Pin		
J17	DTR	USART_DTR_0	AM17	J17 - 1, 2	22
	TXD	USART_TXD_0	AG16	J17 - 5	8
	RTS	USART RTS_0	AU18	J17 - 7	20
	DSR	USART_DSR_0	AP19	J17 - 3	30
	RXD	USART_RXD_0	AR19	J17 - 6	6
	CTS	USART_CTS_0	AR18	J17 - 8	18
	Enable	USART0_EN	AW19	n/a	n/a
	n/a	USART_SCK_0	AV17	n/a	10
J18	DTR	USART_DTR_1	AE19	J18 - 1, 2	21
	TXD	USART_TXD_1	AD18	J18 - 5	7
	RTS	USART RTS_1	AD17	J18 - 7	19
	DSR	USART_DSR_1	AL18	J18 - 3	29
	RXD	USART_RXD_1	AM19	J18 - 6	5
	CTS	USART_CTS_1	AN19	J18 - 8	17
	Enable	USART1_EN	AN18	n/a	n/a
	n/a	USART_SCK_1	AA15	n/a	9

SPI Interface

The DIGILAB SX V provides an SPI interface through general purpose Stratix V I/O pins. Besides an ESD protection, there are no special buffers or level shifters implemented. In order to use the SPI interface, a logic controller for SPI must be implemented in the Stratix V device.

The SPI interface is available through J28, a standard dual row 2x5 header. In addition, all SPI signals are available through J13, a Samtec QSH-30 connector, which allows to connect custom add-on or interface boards.

LEDs are connected to all SPI signals, giving a visual indication, whenever data is being transmitted or received. The following table shows the pin mapping between the Stratix V device and the SPI signals.

Table 6: SPI Interface

Function	Stratix V - U30		J28 2x5 Header	Samtec Connectors J13
	Signal	Pin		
GND	n/a	n/a	1	n/a
GND	n/a	n/a	2	n/a
3.3V	n/a	n/a	3	n/a
SCK	SPI_SCK	AL16	4	39
MISO	SPI_MISO	AD16	5	32
MOSI	SPI_MOSI	AA14	6	31
PCS_2	SPI_PCS_N_2	AW13	7	42
PCS_3	SPI_PCS_N_3	AM16	8	41
PCS_0	SPI_SS_PCS0_N	AW17	9	40
PCS_1	SPI_PCS_N_1	AF16	10	43

USB Interface

On the board, there is a USB transceiver that complies with USB 1.1, as well as a USB connector and a line protection device. USB 2.0 can be supported with a different, pin-compatible transceiver, that can be mounted on a request basis. The board provides the transceiver (U6), however the USB controller must be implemented in the Stratix V device.

J31 is a standard USB Type B connector. This connector can be used for communication with a host computer using a standard USB cable. In addition, the local signals of the USB transceiver are available through J13, a Samtec QSH-30 connector, which allows to connect custom add-on or interface boards.

LEDs are connected to the USB data signals, giving a visual indication whenever data is being transmitted. Furthermore, there is a LED (D57) that monitors the USB input voltage.

The USB interface has programmable pull-up resistors. They can be controlled through the signals USB_P_PULLUP (monitored through LED D55) and USB_N_PULLUP (monitored through LED D56) from within the FPGA.

Furthermore the presence of the USB 5V voltage can be monitored with LED D57 and the FPGA input VUSB.

A data sheet for the USB transceiver can be found at:

URL: <http://www.fairchildsemi.com>

Type: USB1T11A (for USB 2.0: USB1T20)

The following table shows the pin mapping between the Stratix V device and the USB signals.

Table 7: USB Interface

Function	Stratix V - U30		Samtec Connectors J13
	Signal	Pin	
VPO	USB_TXD	AP16	53
VMO	USB_EOP	AR17	55
OE_N	USB_TXOE_N	AL10	54
SUSPND	USB_ON_N	AF10	56
VP	USB_RXDP	AW14	52
VM	USB_RXDM	AN16	51
RCV	USB_RXD	AV14	44
D+ Pull-Up	USB_P_PULLUP	AV16	n/a
D- Pull-Up	USB_N_PULLUP	AW16	n/a
VBUS Monitor	VUSB	AP13	n/a

Multi-ICE JTAG Interface

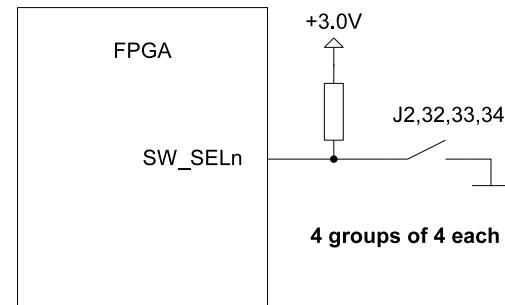

The Multi-ICE JTAG connector allows the connection of a Multi-ICE interface unit to the board. The connection enables debugging of ARM processors implemented inside the Stratix V FPGA. All signals feature ESD protection and are directly connected to standard Stratix V I/O pins. The signal mapping can be found in the following table:

Table 8: Multi-ICE JTAG Connector

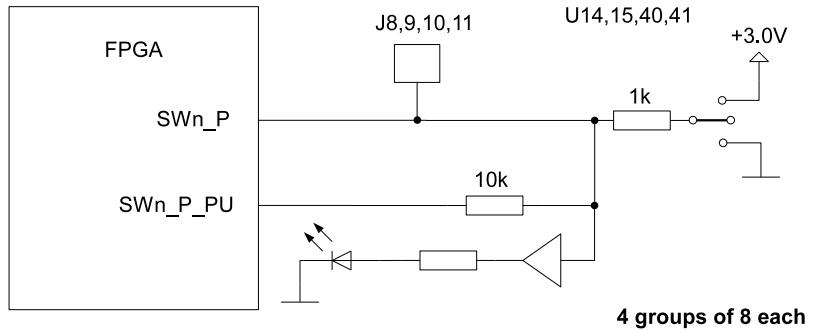
Signal	J1 Connector		Signal	Stratix V U30 Pin
	Pin	Pin		
3.0V	2	1	3.0V	n/a
GND	4	3	ICE_TRST_N	AG19
GND	6	5	ICE_TDI	AH19
GND	8	7	ICE_TMS	AJ19
GND	10	9	ICE_TCK	AK18
GND	12	11	ICE_RTCK	AH18
GND	14	13	ICE_TDO	AJ18
GND	16	15	ICE_SRST_N	AF19
GND	18	17	ICE_DBGRQ	AG18
GND	20	19	ICE_DBGACK	AE18

DIP Switches (two-state)

The DIGILAB SX V has 16 two-state DIP switches. They switch between GND (when on) and a 10k Ohm pull-up resistor (when off). The following diagram shows the functionality of the two-state switches.

Figure 5: Two-state DIP switches

The signal mapping for the 2-state DIP switches can be found in the following table:


Table 9: DIP Switches (two-state)

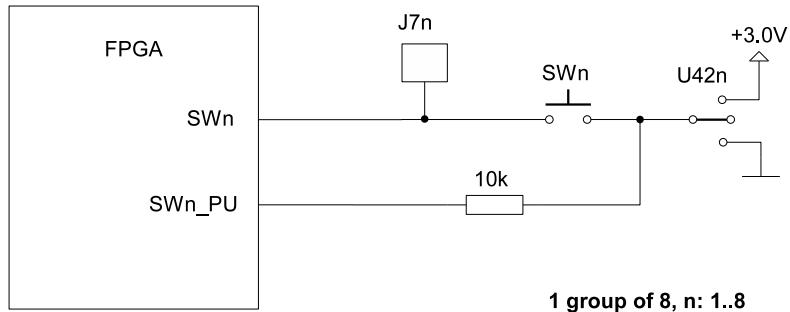
DIP Switch		Signal	Stratix V - U30 Pin
J2	1	SW_SEL1	AL29
	2	SW_SEL2	AM29
	3	SW_SEL3	AK29
	4	SW_SEL4	AJ29
J32	1	SW_SEL5	AP28
	2	SW_SEL6	AR28
	3	SW_SEL7	AL27
	4	SW_SEL8	AL28
J33	1	SW_SEL9	AM28
	2	SW_SEL10	AN28
	3	SW_SEL11	AA26
	4	SW_SEL12	AA27
J34	1	SW_SEL13	AA28
	2	SW_SEL14	AA29
	3	SW_SEL15	AB27
	4	SW_SEL16	AC27

DIP Switches (three-state) and User LEDs

The DIGILAB SX III has a total of 32 three-state DIP switches in four groups of eight.

Figure 6: Three-state DIP switches

The signals driven by these switches are also connected to programmable pull-up/down resistors, as well as LEDs through drivers. The FPGA signal `SWn_P` can be used as an input, driven by the switch and pulled high or low through `SWn_P_PU`. Alternatively, when the switch is not used, the signal `SWn_P` can be used as output driven by the FPGA and controlling the LED. The LEDs will show the current status of the line.


Table 10: Three-state DIP switches and LEDs

Switch	LED	Signal		Pull-Up/Down Resistor		
		Name	Stratix V U30 - Pin	Name	Stratix V U30 - Pin	
U14	1	LED1	SW1_P	AL21	SW1_P_PU	AL15
	2	LED2	SW2_P	AL14	SW2_P_PU	AJ15
	3	LED3	SW3_P	AP22	SW3_P_PU	AW22
	4	LED4	SW4_P	AU23	SW4_P_PU	AT23
	5	LED5	SW5_P	AG23	SW5_P_PU	AD22
	6	LED6	SW6_P	AF23	SW6_P_PU	AG22
	7	LED7	SW7_P	AR22	SW7_P_PU	AJ20
	8	LED8	SW8_P	AL20	SW8_P_PU	AJ21
U15	1	LED9	SW9_P	AW23	SW9_P_PU	AV22
	2	LED10	SW10_P	AV23	SW10_P_PU	AE22
	3	LED11	SW11_P	AF22	SW11_P_PU	AK21
	4	LED12	SW12_P	AL22	SW12_P_PU	AD23
	5	LED13	SW13_P	AE23	SW13_P_PU	AM23
	6	LED14	SW14_P	AN23	SW14_P_PU	AM22
	7	LED15	SW15_P	AN22	SW15_P_PU	AU27
	8	LED16	SW16_P	AU25	SW16_P_PU	AR24
U41	1	LED17	SW17_P	AT24	SW17_P_PU	AP25
	2	LED18	SW18_P	AN24	SW18_P_PU	AN25
	3	LED19	SW19_P	AT26	SW19_P_PU	AD27
	4	LED20	SW20_P	AE27	SW20_P_PU	AH25
	5	LED21	SW21_P	AU26	SW21_P_PU	AV25
	6	LED22	SW22_P	AP27	SW22_P_PU	AE25
	7	LED23	SW23_P	AC24	SW23_P_PU	AH27
	8	LED24	SW24_P	AG27	SW24_P_PU	AB24
U40	1	LED25	SW25_P	AP24	SW25_P_PU	AM25
	2	LED26	SW26_P	AR25	SW26_P_PU	AF25
	3	LED27	SW27_P	AH24	SW27_P_PU	AD24
	4	LED28	SW28_P	AW25	SW28_P_PU	AE24
	5	LED29	SW29_P	AJ27	SW29_P_PU	AU24
	6	LED30	SW30_P	AV26	SW30_P_PU	AK27
	7	LED31	SW31_P	AR27	SW31_P_PU	AW26
	8	LED32	SW32_P	AG25	SW32_P_PU	AT27

Push Buttons

The DIGILAB SX V features 8 user configurable push buttons. Through an 8-bit three-state DIP switch, the push buttons can be set to be active low, active high or disabled. Furthermore there are programmable pull-up/down resistors for every push button signal. The following diagram shows the functionality of a single push button.

Figure 7: Push Buttons

Table 11: Push Buttons

Switch		Signal		Pull-Up/Down Resistor	
		Name	Stratix V U30 - Pin	Name	Stratix V U30 - Pin
SW	1	SW1	AB25	SW1_BU	AJ24
	2	SW2	AA25	SW2_BU	AG24
	3	SWP	AC25	SW3_BU	AE26
	4	SW4	AC26	SW4_BU	AD26
	5	SW5	AJ26	SW5_BU	AN27
	6	SW6	AK26	SW6_BU	AN26
	7	SW7	AF26	SW7_BU	AM26
	8	SW8	AG26	SW8_BU	AL26

SD/MMC Connector

The DIGILAB SX V features an SD (Secure Digital)/MultiMediaCard (MMC) card connector (U61). This connector can be used to insert standard SD/MMC cards. The SD/MultiMediaCard card is a universal low cost data storage and communication media. It was designed to cover a wide area of applications, such as electronic toys, organizers, PDAs, cameras, smart phones, digital recorders, MP3 players, etc. The SD/MultiMediaCard card communication is based on an advanced 7-pin serial bus. All relevant SD/MMC signals are connected directly to the Stratix V device. On the DIGILAB SX V, SD/Multi Media cards may be used as a flexible, non-volatile and mobile storage media. It is up to the user to create an interface between the SD/MMC card and e.g. a NIOS II or custom logic. Contact El Camino for information on availability of ready to use SD/MMC interfaces, NIOS II library functions and drivers.

Table 12: SD/MMC Connector

SD Card Function		Connector U61 Pin	Stratix V U30	
SD Mode	SPI Mode		Signal	Pin
CD/DAT3	CS	1	MMC_RSV	AB9
CMD	DI	2	MMC_CMD	AE9
CLK	SCLK	5	MMC_CLK	AC10
DAT0	DO	7	MMC_DAT	AD12
DAT1		8	MMC_DAT2	AD9
DAT2		9	MMC9	AB10
WRITE_PROT_FRONT		12	MMC_WP1	AC9
CARD_DETECT		13	MMC_CDET	AB12

Debug Connectors

The DIGILAB SX V has various, different connectors that can be used to connect debugging logic to the board.

There are two 38 pin AMP/Tyco Matched Impedance Connectors (MICTOR) on the board. More information about these connectors can be found at:

URL: www.tycoelectronics.com

Type: 2-5767004-2

On each of these connectors, there are 32 standard Stratix V user IOs in addition to two PLL clock outputs/user IOs .

The signals of MICTOR connector J4 are routed directly to the FPGA and are therefore optimized for high speed. These pins connect to bank 8 of the FPGA which can be switched from 3.0V to 2.5V operation by opening jumper J12. The signals of J5 are also available through standard dual row .100 inch headers (IOs on J24,25,26,27 and clocks on J3/ J29) for easy access to individual signals.

The following tables lists the signal names and pin numbers for these connectors.

Table 13: MICTOR connector J5

Header		Stratix V U30 - Pin	Signal	J5		Signal	Stratix V U30 - Pin	Header	
Con.	Pin			Pin	Pin			Pin	Con.
N/A	N/A	N/A	GND	1	38	GND	N/A	N/A	N/A
N/A	N/A	N/A	GND	2	37	GND	N/A	N/A	N/A
J3	1	AC30	LA_CLK0_J5_R	3	36	LA_CLK1_J5_R	AB30	1	J29
J27	1	AN31	LA_A3_7	4	35	LA_A1_7	AP30	1	J24
	3	AT33	LA_A3_6	5	34	LA_A1_6	AJ33	3	
	5	AL33	LA_A3_5	6	33	LA_A1_5	AK33	5	
	7	AH33	LA_A3_4	7	32	LA_A1_4	AK32	7	
	9	AF31	LA_A3_3	8	31	LA_A1_3	AH30	9	
	11	AH31	LA_A3_2	9	30	LA_A1_2	AR30	11	
	13	AG31	LA_A3_1	10	29	LA_A1_1	AE31	13	
	15	AJ32	LA_A3_0	11	28	LA_A1_0	AJ30	15	
J26	1	AU32	LA_A2_7	12	27	LA_A0_7	AT32	1	J25
	3	AM31	LA_A2_6	13	26	LA_A0_6	AR31	3	
	5	AW34	LA_A2_5	14	25	LA_A0_5	AV34	5	
	7	AP31	LA_A2_4	15	24	LA_A0_4	AP33	7	
	9	AV32	LA_A2_3	16	23	LA_A0_3	AU33	9	
	11	AW32	LA_A2_2	17	22	LA_A0_2	AR33	11	
	13	AV31	LA_A2_1	18	21	LA_A0_1	AU34	13	
	15	AW31	LA_A2_0	19	20	LA_A0_0	AU30	15	

Table 14: High-Speed MICTOR connector J4

Stratix V U30 - Pin	Signal	J5		Signal	Stratix V U30 - Pin
		Pin	Pin		
N/A	GND	1	38	GND	N/A
N/A	GND	2	37	GND	N/A
AD30	LA_CLK3_J4	3	36	LA_Q1_CLK_J4	AE30
J25	LA_C1_7	4	35	LA_C3_7	K34
P26	LA_C1_6	5	34	LA_C3_6	J34
N26	LA_C1_5	6	33	LA_C3_5	K33
U25	LA_C1_4	7	32	LA_C3_4	J33
P28	LA_C1_3	8	31	LA_C3_3	G33
K24	LA_C1_2	9	30	LA_C3_2	N33
J26	LA_C1_1	10	29	LA_C3_1	M33
H26	LA_C1_0	11	28	LA_C3_0	U31
M27	LA_C0_7	12	27	LA_C2_7	T31
L27	LA_C0_6	13	26	LA_C2_6	L28
K31	LA_C0_5	14	25	LA_C2_5	K28
J31	LA_C0_4	15	24	LA_C2_4	N28
L31	LA_C0_3	16	23	LA_C2_3	M29
L30	LA_C0_2	17	22	LA_C2_2	R29
R30	LA_C0_1	18	21	LA_C2_1	P29
R31	LA_C0_0	19	20	LA_C2_0	K25

Expansion Connectors

The DIGILAB SX V has various connectors that can be used to connect user logic or custom adapter boards.

There are two 120 pin (J15, J16) as well as one 160 pin (J35) Samtec QSH Hi-Speed connectors on the board. The latter one is based on Altera's HSMC standard.

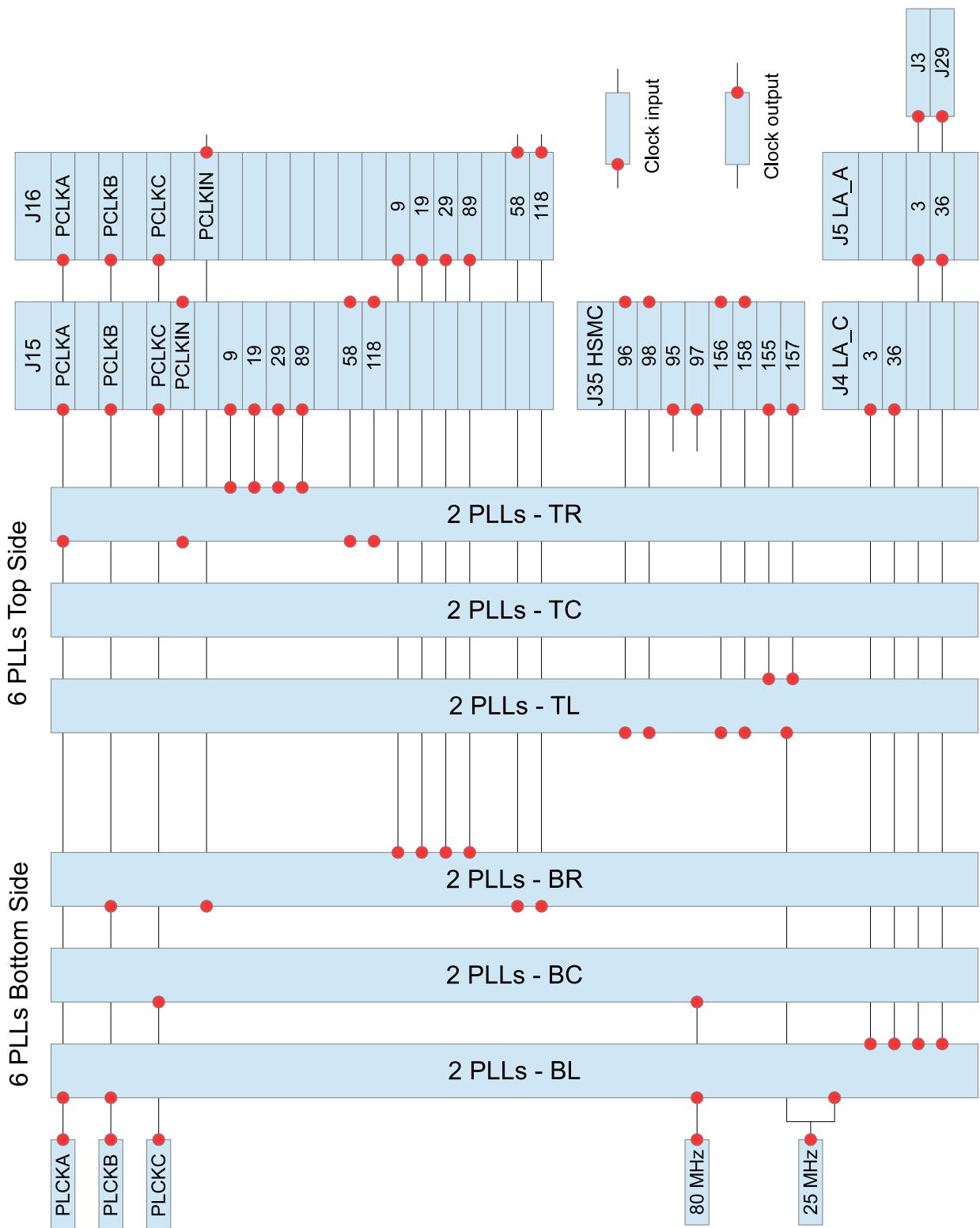
More information about the connectors can be found on the Samtec website at:

URL: www.samtec.com
Type: QSH-060-.../ASP-122953-01

Details on the pinout of these connectors can be found in the schematics or in the netlist, that is provided with the DIGILAB SX V.

Clocking

The DIGILAB SX V development board includes an 80 MHz oscillator, as well as an 25 MHz oscillator that drive the Stratix V FPGA. In addition there are three SMA clock inputs, feeding comparators, driving into clock buffers. The clock buffers are driving the FPGA and various expansion connectors. The signal length between A, B and C clocks are closely matched in order to provide minimal skew between the individual, external clocks.


The Stratix V FPGA contains multiple phase locked loops (PLLs) and global clock networks for clock management. Stratix V fractional PLLs offer clock multiplication and division, phase shifting, programmable duty cycle, external clock outputs and more, allowing system-level clock management and skew control on the DIGILAB SX V.

The following diagram shows all clock inputs and outputs and how they are connected to the individual PLLs and connectors.

All unused, dual purpose clock inputs are connected to GND on the board. It is important that these pins are either reserved as inputs or reserved as IOs driving ground in the user design.

Figure 8: Clocking Circuitry

Table 15: Clock Signals

Signal	Dir. at FPGA	Board Connection	Stratix V Clock Signal	PLL	Stratix V Pin
80MHz	IN	oscillator - U5	CLK2P CLK5P	BL BC	AF29 AK23
25MHz_A 25MHz_B	IN	oscillator - U71	CLK21P CLK0P	TL BL	D33 AV29
PCLKA_FPGA	IN	J21(SMA) J15-41 J16-41 PCLKA_FPGA1_LA PCLKA_FPGA1	CLK1P CLK13P	BL TR	AV28 L6
PCLKB_FPGA	IN	J19(SMA) J15-51 J16-51 PCLKB_FPGA1_LA PCLKB_FPGA1	CLK3P CLK9P	BL BR	AG28 AN6
PCLKC_FPGA	IN	J20(SMA) J15-69 J16-69 PCLKC_FPGA1	CLK4P	BC	AH22
PCLKIN_J15	IN	J15-79	CLK12P	TR	G7
PCLKIN_J16	IN	J16-79	CLK11P	BR	AV7
PERICON_58_CLKIN	IN	J15-58	CLK14P	TR	B7
CLKIN_J15_118	IN	J15-118	CLK15P	TR	D7
PER2CON_58_CLKIN	IN	J16-58	CLK10P	BR	AR8
CLKIN_J16_118	IN	J16-118	CLK8P	BR	AL7
CLKOUT_J15_9	OUT	J15-9	CLKOUT2	TR	A3
CLKOUT_J15_19	OUT	J15-19	CLKOUT3	TR	A4
CLKOUT_J15_29	OUT	J15-29	CLKOUT0	TR	A6
CLKOUT_J15_89	OUT	J15-89	CLKOUT1	TR	A5
CLKOUT_J16_9	OUT	J16-9	CLKOUT0	BR	AT6
CLKOUT_J16_19	OUT	J16-19	CLKOUT1	BR	AU6
CLKOUT_J16_29	OUT	J16-29	CLKOUT3	BR	AR7
CLKOUT_J16_89	OUT	J16-89	CLKOUT2	BR	AP7
MEZ_CLK_IN_P/N	IN	J35-96/98	CLK23P/N	TL	R32/P32
MEZ_CLK2_IN_P/N	IN	J35-156/158	CLK22P/N	TL	N32/M32
MEZ_CLK_OUT_P/N	OUT	J35-95/97	TX122P/N	-	M20/L20
MEZ_CLK2_OUT_P/N	OUT	J35-155/157	CLKOUT0/1	TL	P34/N34
LA_CLK3_J4	OUT	J4-3	CLKOUT0	BL	AD30
LA_Q1_CLK_J4	OUT	J4-36	CLKOUT1	BL	AE30
LA_CLK1_J5	OUT	J5-36, J29-1	CLKOUT2	BL	AB30
LA_CLK0_J5	OUT	J5-3, J3-1	CLKOUT3	BL	AC30

Configuration

The DIGILAB SX V uses an Altera EPCQ512 serial configuration device for non-volatile configuration data storage. The FPGA is setup for Standard Active Serial configuration mode. Upon power-up the DIGILAB SX V will start configuration from address 0x0 of the serial configuration device. A configuration cycle can also be triggered by pushing SW9 (marked as „SW9 Config“) which pulls the nConfig input of the FPGA low.

In addition, the FPGA can be programmed through the JTAG interface.

There is a device errata for the EPCQ device which says that x4 mode is currently not supported. Although the EPCQ is wired in x4 mode on the board, the programming files needs to be generated for x1 mode.

JTAG Connector

J14 is a 10-pin JTAG interface connector compatible with current Altera ByteBlaster, USB-Blaster and Ethernet-Blaster download cables. The JTAG connection can be used for any of the following purposes:

- Quartus II software can configure the Stratix V device (U30) with a new bitstream (such as .sof) file.
- Quartus II can re-program the serial configuration device EPCQ with a JTAG indirect configuration file (.jic)
- The following Altera JTAG accessible functions can be used:
 - SignalTap II Logic Analyzer
 - In-System Memory Content Editor
 - Logic Analyzer Interface Editor
 - In-System Sources and Probes
 - NIOS II Debugging Interface

The JTAG programming interface is not available if the Stratix V has been protected by programming a non-volatile security key.

The JTAG connection is most commonly used to download user configuration files (such as .sof) to the Stratix V device during logic development and debugging.

Notes:

El Camino GmbH
Landshuter Str. 1
D-84048 Mainburg
Germany
Telephone +49-8751-8787-0
Telefax +49-8751-8787-10
E-mail: info@elca.de
<http://www.elcaminode>

El Camino GmbH Training - Engineering - Consultancy, DIGILAB 10K10, DIGILAB picoMAX, DIGILAB SX IV, DIGILAB SX V and other names of El Camino products, product features and services are trademarks and/or service marks of El Camino GmbH in Germany and other countries.

ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS, STRATIX and other names of Altera products, product features and services are trademarks and/or service marks of Altera Corporation in the United States and other countries. Other product and company names mentioned in this document may be the trademarks of their respective owners.

No warranties: This documentation is "as is" without any express or implied warranty of any kind including warranties of merchantability, no infringement of intellectual property or of fitness for any particular purpose. In no event shall El Camino or its suppliers be liable for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption or loss of information) arising out of the use of or inability to use this documentation, even if El Camino has been advised of the possibility of such damages. Because some jurisdictions prohibit the exclusion or limitations of liability for consequential or incidental damages, some of the above limitations may not apply to you.

El Camino further does not warrant the accuracy or completeness of the information, text, graphics or other items contained in this document. El Camino may make changes to these materials, or to the products described therein, at any time without notice. El Camino makes no commitment to update this document.

Copyright© 2025 El Camino GmbH. All rights reserved